Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pib2 and the EGO complex are both required for activation of TORC1.

Identifieur interne : 000773 ( Main/Exploration ); précédent : 000772; suivant : 000774

Pib2 and the EGO complex are both required for activation of TORC1.

Auteurs : Natalia V. Varlakhanova [États-Unis] ; Michael J. Mihalevic [États-Unis] ; Kara A. Bernstein [États-Unis] ; Marijn G J. Ford [États-Unis]

Source :

RBID : pubmed:28993463

Descripteurs français

English descriptors

Abstract

The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.

DOI: 10.1242/jcs.207910
PubMed: 28993463
PubMed Central: PMC5702048


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pib2 and the EGO complex are both required for activation of TORC1.</title>
<author>
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mihalevic, Michael J" sort="Mihalevic, Michael J" uniqKey="Mihalevic M" first="Michael J" last="Mihalevic">Michael J. Mihalevic</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bernstein, Kara A" sort="Bernstein, Kara A" uniqKey="Bernstein K" first="Kara A" last="Bernstein">Kara A. Bernstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA marijn@pitt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28993463</idno>
<idno type="pmid">28993463</idno>
<idno type="doi">10.1242/jcs.207910</idno>
<idno type="pmc">PMC5702048</idno>
<idno type="wicri:Area/Main/Corpus">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000707</idno>
<idno type="wicri:Area/Main/Curation">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000707</idno>
<idno type="wicri:Area/Main/Exploration">000707</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pib2 and the EGO complex are both required for activation of TORC1.</title>
<author>
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mihalevic, Michael J" sort="Mihalevic, Michael J" uniqKey="Mihalevic M" first="Michael J" last="Mihalevic">Michael J. Mihalevic</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bernstein, Kara A" sort="Bernstein, Kara A" uniqKey="Bernstein K" first="Kara A" last="Bernstein">Kara A. Bernstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA marijn@pitt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of cell science</title>
<idno type="eISSN">1477-9137</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoptosis Regulatory Proteins (physiology)</term>
<term>Autophagy (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Intracellular Membranes (enzymology)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factors (metabolism)</term>
<term>Vacuoles (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Autophagie (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Membranes intracellulaires (enzymologie)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines régulatrices de l'apoptose (physiologie)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Vacuoles (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Apoptosis Regulatory Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Membranes intracellulaires</term>
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines régulatrices de l'apoptose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Enzyme Activation</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Autophagie</term>
<term>Transduction du signal</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The TORC1 complex is a key regulator of cell growth and metabolism in
<i>Saccharomyces cerevisiae</i>
The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28993463</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-9137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>130</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of cell science</Title>
<ISOAbbreviation>J Cell Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Pib2 and the EGO complex are both required for activation of TORC1.</ArticleTitle>
<Pagination>
<MedlinePgn>3878-3890</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1242/jcs.207910</ELocationID>
<Abstract>
<AbstractText>The TORC1 complex is a key regulator of cell growth and metabolism in
<i>Saccharomyces cerevisiae</i>
The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.</AbstractText>
<CopyrightInformation>© 2017. Published by The Company of Biologists Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Varlakhanova</LastName>
<ForeName>Natalia V</ForeName>
<Initials>NV</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mihalevic</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernstein</LastName>
<ForeName>Kara A</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ford</LastName>
<ForeName>Marijn G J</ForeName>
<Initials>MGJ</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9115-4413</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA marijn@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 ES024872</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM120102</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Cell Sci</MedlineTA>
<NlmUniqueID>0052457</NlmUniqueID>
<ISSNLinking>0021-9533</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051017">Apoptosis Regulatory Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501979">MEH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000610972">Pib2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051017" MajorTopicYN="N">Apoptosis Regulatory Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">EGO complex</Keyword>
<Keyword MajorTopicYN="N">Gtr1</Keyword>
<Keyword MajorTopicYN="N">Gtr2</Keyword>
<Keyword MajorTopicYN="N">Pib2</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
</KeywordList>
<CoiStatement>Competing interestsThe authors declare no competing or financial interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28993463</ArticleId>
<ArticleId IdType="pii">jcs.207910</ArticleId>
<ArticleId IdType="doi">10.1242/jcs.207910</ArticleId>
<ArticleId IdType="pmc">PMC5702048</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1302-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jan;5(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14 ):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):29889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3552-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 13;10(3):e0120250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25767889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Apr;22(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jun 28;11:353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 May;143(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8722765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 15;287(25):20913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22547071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Oct 31;195(3):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small GTPases. 2016 Oct;7(4):239-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Oct 18;147(2):435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23677617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2014 Jun;19(6):449-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jul 14;11(7):e1005382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26172854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Aug 9;16(6):1510-1517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27477288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 23;280(38):33076-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Mar;21(3):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21173034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2014 May 6;106(9):1986-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24806931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Mar;24(6):870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(1):35-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Jul;2(1):157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9702203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
</region>
<name sortKey="Bernstein, Kara A" sort="Bernstein, Kara A" uniqKey="Bernstein K" first="Kara A" last="Bernstein">Kara A. Bernstein</name>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<name sortKey="Mihalevic, Michael J" sort="Mihalevic, Michael J" uniqKey="Mihalevic M" first="Michael J" last="Mihalevic">Michael J. Mihalevic</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000773 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000773 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28993463
   |texte=   Pib2 and the EGO complex are both required for activation of TORC1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28993463" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020